73 research outputs found

    Tailoring surface nanostructures on polyaryletherketones for load-bearing implants

    Get PDF
    High-performance thermoplastics including polyetheretherketone (PEEK) are key biomaterials for load-bearing implants. Plasma treatment of implants surfaces has been shown to chemically activate its surface, which is a prerequisite to achieve proper cell attachment. Oxygen plasma treatment of PEEK films results in very reproducible surface nanostructures and has been reported in the literature. Our goal is to apply the plasma treatment to another promising polymer, polyetherketoneketone (PEKK), and compare its characteristics to the ones of PEEK. Oxygen plasma treatments of plasma powers between 25 and 150 W were applied on 60 μm-thick PEKK and 100 μm-thick PEEK films. Analysis of the nanostructures by atomic force microscopy showed that the roughness increased and island density decreased with plasma power for both PEKK and PEEK films correlating with contact angle values without affecting bulk properties of the used films. Thermal analysis of the plasma-treated films shows that the plasma treatment does not change the bulk properties of the PEKK and PEEK film

    Tablet-Based Puzzle Game Intervention for Cognitive Function and Well-Being in Healthy Adults: Pilot Feasibility Randomized Controlled Trial.

    Get PDF
    BACKGROUND Promoting cognitive health is key to maintaining cognitive and everyday functions and preventing the risk of cognitive impairment or dementia. Existing scientific evidence shows the benefits of various training modalities on cognition. One way to promote cognitive health is through engagement in cognitive activities (eg, board and video games). OBJECTIVE This study aims to investigate the benefits of dynamic adaptive casual puzzle games on cognitive function and well-being in healthy adults and older people. METHODS A total of 12 adults and older people (female participants: n=6; mean age 58.92, SD 10.28 years; range 46-75 years) were included in this pilot randomized controlled trial. This study used a crossover design with two phases (8 weeks each) and three measurement waves (pretest, midtest, and posttest). The participants were randomly allocated either to the control or experimental group. In the control group, participants read newspapers between the pre- and midtest, then switched to cognitive training with puzzle games. In the experimental group, the interventions were reversed. Baseline measurements (pretest) were collected before the intervention. The interventions were delivered on tablet computers and took place unsupervised at participants' homes. RESULTS The outcome measures included global cognitive function, higher cognitive function, and emotional well-being at 3 time points (pretest, midtest, and posttest) using standardized neuropsychological tests. The participants showed improvements in their visual attention and visuospatial measures after the puzzle game intervention. CONCLUSIONS The study showed that digital games are a feasible way to train cognition in healthy adults and older people. The algorithm-based dynamic adaption allows accommodations for persons with different cognitive levels of skill. The results of the study will guide future prevention efforts and trials in high-risk populations

    Wearable Based Calibration of Contactless In-home Motion Sensors for Physical Activity Monitoring in Community-Dwelling Older Adults

    Get PDF
    Passive infrared motion sensors are commonly used in telemonitoring applications to monitor older community-dwelling adults at risk. One possible use case is quantification of in-home physical activity, a key factor and potential digital biomarker for healthy and independent aging. A major disadvantage of passive infrared sensors is their lack of performance and comparability in physical activity quantification. In this work, we calibrate passive infrared motion sensors for in-home physical activity quantification with simultaneously acquired data from wearable accelerometers and use the data to find a suitable correlation between in-home and out-of-home physical activity. We use data from 20 community-dwelling older adults that were simultaneously provided with wireless passive infrared motion sensors in their homes, and a wearable accelerometer for at least 60 days. We applied multiple calibration algorithms and evaluated results based on several statistical and clinical metrics. We found that using even relatively small amounts of wearable based ground-truth data over 7–14 days, passive infrared based wireless sensor systems can be calibrated to give largely better estimates of older adults’ daily physical activity. This increase in performance translates directly to stronger correlations of measured physical activity levels with a variety of age relevant health indicators and outcomes known to be associated with physical activity

    Disposable Polymeric Micro-Cantilever Arrays for Sensing

    Get PDF
    AbstractTo fabricate low-cost polymeric cantilever arrays, we have applied injection molding. For polymers, including polypropylene and polyvinylidenfluoride, cantilever dimensions in the micrometer range with an aspect ratio as large as 10 were successfully manufactured. The cantilevers show a performance similar to the established silicon cantilevers. Combined with functionalization, the cantilever arrays show a great potential in biomedical applications

    Development of a Search Task Using Immersive Virtual Reality: Proof-of-Concept Study

    Get PDF
    Background Serious games are gaining increasing importance in neurorehabilitation since they increase motivation and adherence to therapy, thereby potentially improving its outcome. The benefits of serious games, such as the possibility to implement adaptive feedback and the calculation of comparable performance measures, can be even further improved by using immersive virtual reality (iVR), allowing a more intuitive interaction with training devices and higher ecological validity. Objective This study aimed to develop a visual search task embedded in a serious game setting for iVR, including self-adapting difficulty scaling, thus being able to adjust to the needs and ability levels of different groups of individuals. Methods In a two-step process, a serious game in iVR (bird search task) was developed and tested in healthy young (n=21) and elderly (n=23) participants and in a group of patients with impaired visual exploration behavior (ie, patients with hemispatial neglect after right-hemispheric stroke; n=11). Usability, side effects, game experience, immersion, and presence of the iVR serious game were assessed by validated questionnaires. Moreover, in the group of stroke patients, the performance in the iVR serious game was also considered with respect to hemispatial neglect severity, as assessed by established objective hemispatial neglect measures. Results In all 3 groups, reported usability of the iVR serious game was above 4.5 (on a Likert scale with scores ranging from 1 to 5) and reported side effects were infrequent and of low intensity (below 1.5 on a Likert scale with scores ranging from 1 to 4). All 3 groups equally judged the iVR serious game as highly motivating and entertaining. Performance in the game (in terms of mean search time) showed a lateralized increase in search time in patients with hemispatial neglect that varied strongly as a function of objective hemispatial neglect severity. Conclusions The developed iVR serious game, “bird search task,” was a motivating, entertaining, and immersive task, which can, due to its adaptive difficulty scaling, adjust and be played by different populations with different levels of skills, including individuals with cognitive impairments. As a complementary finding, it seems that performance in the game is able to capture typical patterns of impaired visual exploration behavior in hemispatial neglect, as there is a high correlation between performance and neglect severity as assessed with a cancellation task

    A Sensor-Driven Visit Detection System in Older Adults Homes: Towards Digital Late-Life Depression Marker Extraction

    Get PDF
    Modern sensor technology is increasingly used in older adults to not only provide additional safety but also to monitor health status, often by means of sensor derived digital measures or biomarkers. Social isolation is a known risk factor for late-life depression, and a potential component of social-isolation is the lack of home visits. Therefore, home visits may serve as a digital measure for social isolation and late-life depression. Late-life depression is a common mental and emotional disorder in the growing population of older adults. The disorder, if untreated, can significantly decrease quality of life and, amongst other effects, leads to increased mortality. Late-life depression often goes undiagnosed due to associated stigma and the incorrect assumption that it is a normal part of ageing. In this work, we propose a visit detection system that generalizes well to previously unseen apartments - which may differ largely in layout, sensor placement, and size from apartments found in the semi-annotated training dataset. We find that by using a self-training-based domain adaptation strategy, a robust system to extract home visit information can be built (ROC AUC=0.773). We further show that the resulting visit information correlates well with the common geriatric depression scale screening tool (=-0.87, p=0.001), providing further support for the idea of utilizing the extracted information as a potential digital measure or even as a digital biomarker to monitor the risk of late-life depression

    Effects of age and eccentricity on visual target detection

    Get PDF
    The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20–78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance

    A systems approach towards remote health-monitoring in older adults: Introducing a zero-interaction digital exhaust.

    Get PDF
    Using connected sensing devices to remotely monitor health is a promising way to help transition healthcare from a rather reactive to a more precision medicine oriented proactive approach, which could be particularly relevant in the face of rapid population ageing and the challenges it poses to healthcare systems. Sensor derived digital measures of health, such as digital biomarkers or digital clinical outcome assessments, may be used to monitor health status or the risk of adverse events like falls. Current research around such digital measures has largely focused on exploring the use of few individual measures obtained through mobile devices. However, especially for long-term applications in older adults, this choice of technology may not be ideal and could further add to the digital divide. Moreover, large-scale systems biology approaches, like genomics, have already proven beneficial in precision medicine, making it plausible that the same could also hold for remote-health monitoring. In this context, we introduce and describe a zero-interaction digital exhaust: a set of 1268 digital measures that cover large parts of a person's activity, behavior and physiology. Making this approach more inclusive of older adults, we base this set entirely on contactless, zero-interaction sensing technologies. Applying the resulting digital exhaust to real-world data, we then demonstrate the possibility to create multiple ageing relevant digital clinical outcome assessments. Paired with modern machine learning, we find these assessments to be surprisingly powerful and often on-par with mobile approaches. Lastly, we highlight the possibility to discover novel digital biomarkers based on this large-scale approach

    Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations

    Get PDF
    The selection of appropriate outcome measures is fundamental to the design of any successful clinical trial. Although dementia with Lewy bodies (DLB) is one of the most common neurodegenerative conditions, assessment of therapeutic benefit in clinical trials often relies on tools developed for other conditions, such as Alzheimer's or Parkinson's disease. These may not be sufficiently valid or sensitive to treatment changes in DLB, decreasing their utility. In this review, we discuss the limitations and strengths of selected available tools used to measure DLB-associated outcomes in clinical trials and highlight the potential roles for more specific objective measures. We emphasize that the existing outcome measures require validation in the DLB population and that DLB-specific outcomes need to be developed. Finally, we highlight how the selection of outcome measures may vary between symptomatic and disease-modifying therapy trials
    corecore